An improved lower bound on the length of the longest cycle in random graphs

Michael Anastos Institute of Science and Technology Austria

Let $L_{c,n}$ denote the length of the longest cycle of the binomial random graph G(n,p), p = c/n, c > 1. Anastos and Frieze proved that $L_{c,n}/n$ converges to a limit a.s. and gave a method for calculating this limit within arbitrary accuracy provided $c \geq 20$. Far less is known though when c < 20. At this talk we study $L_{c,n}$ when $c = 1 + \epsilon, \epsilon = \epsilon(n)$, with $\epsilon^3 n \to \infty$ and ϵ is bounded above by a sufficiently small constant. We show that in this regime G(n, c/n) has a cycle that spans more than 75% of the vertices of its 2-core. This improves upon the current best lower bound known on $L_{c,n}$ of 66.6..% due to Luczak.