GRAPHS WITH LARGE MINIMUM DEGREE AND NO SMALL ODD CYCLES ARE THREE-COLOURABLE

Domenico Mergoni

d.mergoni@lse.ac.uk

London School of Economics

This talk is based on joint work with Julia Böttcher, Nora Frankl, Olaf Parczyk and Jozef Skokan.

Let \mathcal{F} be a fixed family of graphs. The homomorphism threshold of \mathcal{F} is the infimum of those α for which there exists an \mathcal{F} -free graph $H(\mathcal{F}, \alpha)$, such that every \mathcal{F} -free graph on n vertices of minimum degree αn is homomorphic to $H(\mathcal{F}, \alpha)$. Letzter and Snyder showed that the homomorphism threshold of $\{C_3, C_5\}$ is 1/5. They found explicit graphs $H(\mathcal{F}, \alpha)$ for $\alpha \geq \frac{1}{5} + \varepsilon$, which were in addition 3-colourable. Thus, their result also implies that $\{C_3, C_5\}$ -free graphs of minimum degree at least $(\frac{1}{5} + \varepsilon)n$ are 3-colourable. For longer cycles, Ebsen and Schacht showed that the homomorphism threshold of $\{C_3, C_5, \ldots, C_{2\ell-1}\}$ is $\frac{1}{2\ell-1}$. However, their proof does not imply a good bound on the chromatic number of $\{C_3, \ldots, C_{2\ell-1}\}$ -free graphs of minimum degree $(\frac{1}{2\ell-1} + \varepsilon)n$. Answering a question of Letzter and Snyder, we prove that such graphs are 3-colourable.